- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Mastroeni, Matthew (4)
-
Schenck, Hal (2)
-
Stillman, Mike (2)
-
Ferraro, Luigi (1)
-
Galetto, Federico (1)
-
Gandini, Francesca (1)
-
Huang, Hang (1)
-
LaClair, Adam (1)
-
McCullough, Jason (1)
-
Ni, Xianglong (1)
-
Peeva, Irena (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Ferraro, Luigi; Galetto, Federico; Gandini, Francesca; Huang, Hang; Mastroeni, Matthew; Ni, Xianglong (, Journal of Software for Algebra and Geometry)
-
Mastroeni, Matthew; Schenck, Hal; Stillman, Mike (, International Mathematics Research Notices)Abstract Conca–Rossi–Valla [6] ask if every quadratic Gorenstein ring $$R$$ of regularity three is Koszul. In [15], we use idealization to answer their question, proving that in nine or more variables there exist quadratic Gorenstein rings of regularity three, which are not Koszul. In this paper, we study the analog of the Conca–Rossi–Valla question when the regularity of $$R$$ is four or more. Let $$R$$ be a quadratic Gorenstein ring having $${\operatorname {codim}} \ R = c$$ and $${\operatorname {reg}} \ R = r \ge 4$$. We prove that if $c = r+1$ then $$R$$ is always Koszul, and for every $$c \geq r+2$$, we construct quadratic Gorenstein rings that are not Koszul, answering questions of Matsuda [16] and Migliore–Nagel [19].more » « less
-
Mastroeni, Matthew; Schenck, Hal; Stillman, Mike (, Transactions of the American Mathematical Society)null (Ed.)
An official website of the United States government
